135 research outputs found

    Notch Promotes Neural Lineage Entry by Pluripotent Embryonic Stem Cells

    Get PDF
    A central challenge in embryonic stem (ES) cell biology is to understand how to impose direction on primary lineage commitment. In basal culture conditions, the majority of ES cells convert asynchronously into neural cells. However, many cells resist differentiation and others adopt nonneural fates. Mosaic activation of the neural reporter Sox-green fluorescent protein suggests regulation by cell-cell interactions. We detected expression of Notch receptors and ligands in mouse ES cells and investigated the role of this pathway. Genetic manipulation to activate Notch constitutively does not alter the stem cell phenotype. However, upon withdrawal of self-renewal stimuli, differentiation is directed rapidly and exclusively into the neural lineage. Conversely, pharmacological or genetic interference with Notch signalling suppresses the neural fate choice. Notch promotion of neural commitment requires parallel signalling through the fibroblast growth factor receptor. Stromal cells expressing Notch ligand stimulate neural specification of human ES cells, indicating that this is a conserved pathway in pluripotent stem cells. These findings define an unexpected and decisive role for Notch in ES cell fate determination. Limiting activation of endogenous Notch results in heterogeneous lineage commitment. Manipulation of Notch signalling is therefore likely to be a key factor in taking command of ES cell lineage choice

    Influence of surgical approach on component positioning in primary total hip arthroplasty

    Get PDF
    Background: Minimal invasive surgery (MIS) has gained growing popularity in total hip arthroplasty (THA) but concerns exist regarding component malpositioning. The aim of the present study was to evaluate femoral and acetabular component positioning in primary cementless THA comparing a lateral to a MIS anterolateral approach. Methods: We evaluated 6 week postoperative radiographs of 52 hips with a minimal invasive anterolateral approach compared to 54 hips with a standard lateral approach. All hips had received the same type of implant for primary cementless unilateral THA and had a healthy hip contralaterally. Results: Hip offset was equally restored comparing both approaches. No influence of the approach was observed with regard to reconstruction of acetabular offset, femoral offset, vertical placement of the center of rotation, stem alignment and leg length discrepancy. However, with the MIS approach, a significantly higher percentage of cups (38.5 %) was malpositioned compared to the standard approach (16.7 %) (p = 0.022). Conclusions: The MIS anterolateral approach allows for comparable reconstruction of stem position, offset and center of rotation compared to the lateral approach. However, surgeons must be aware of a higher risk of cup malpositioning for inclination and anteversion using the MIS anterolateral approach

    Fundamental issues in systems biology.

    Get PDF
    types: Journal Article; Research Support, Non-U.S. Gov'tIn the context of scientists' reflections on genomics, we examine some fundamental issues in the emerging postgenomic discipline of systems biology. Systems biology is best understood as consisting of two streams. One, which we shall call 'pragmatic systems biology', emphasises large-scale molecular interactions; the other, which we shall refer to as 'systems-theoretic biology', emphasises system principles. Both are committed to mathematical modelling, and both lack a clear account of what biological systems are. We discuss the underlying issues in identifying systems and how causality operates at different levels of organisation. We suggest that resolving such basic problems is a key task for successful systems biology, and that philosophers could contribute to its realisation. We conclude with an argument for more sociologically informed collaboration between scientists and philosophers.Funding received from the Economic and Social Research Council (ESRC), UK, and Overseas Conference Funding from the British Academy

    Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the permanent daylight conditions north of the Arctic circle, there is a unique opportunity for bumblebee foragers to maximise intake, and therefore colony growth, by remaining active during the entire available 24-h period. We tested the foraging rhythms of bumblebee (<it>Bombus terrestris </it>and <it>B. pascuorum</it>) colonies in northern Finland during the summer, when the sun stays above the horizon for weeks. We used fully automatic radio-frequency identification to monitor the foraging activity of more than 1,000 workers and analysed their circadian foraging rhythms.</p> <p>Results</p> <p>Foragers did not use the available 24-h foraging period but exhibited robust diurnal rhythms instead. A mean of 95.2% of the tested <it>B. terrestris </it>workers showed robust diurnal rhythms with a mean period of 23.8 h. Foraging activity took place mainly between 08:00 and 23:00, with only low or almost no activity during the rest of the day. Activity levels increased steadily during the morning, reached a maximum around midday and decreased again during late afternoon and early evening. Foraging patterns of native <it>B. pascuorum </it>followed the same temporal organisation, with the foraging activity being restricted to the period between 06:00 and 22:00.</p> <p>Conclusions</p> <p>The results of the present study indicate that the circadian clock of the foragers must have been entrained by some external cue, the most prominent being daily cycles in light intensity and temperature. Daily fluctuations in the spectral composition of light, especially in the UV range, could also be responsible for synchronising the circadian clock of the foragers under continuous daylight conditions.</p

    Beyond the Global Brain Differences:Intraindividual Variability Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion Carriers

    Get PDF
    BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and globalbrain differences compared with noncarriers. However, interpreting regional differences is challenging if a globaldifference drives the regional brain differences. Intraindividual variability measures can be used to test for regionaldifferences beyond global differences in brain structure.METHODS: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n =30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matchednoncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual’sregional difference and global difference, were used to test for regional differences that diverge from the globaldifference.RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differedmore than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thicknessin regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal andsomatosensory cortex differed more than the global difference in cortical thickness.CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distaland 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanismsinvolved in altered neurodevelopment

    Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium

    Get PDF
    BACKGROUND Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC. METHODS Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals). RESULTS Positive genetic correlation was observed between MD and AD (rgMD−AD = + 0.47, P = 6.6 × 10−10). AC-quantity showed positive genetic correlation with both AD (rgAD−AC quantity = + 0.75, P = 1.8 × 10−14) and MD (rgMD−AC quantity = + 0.14, P = 2.9 × 10−7), while there was negative correlation of AC-frequency with MD (rgMD−AC frequency = −0.17, P = 1.5 × 10−10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10−6). There was no evidence for reverse causation. CONCLUSION This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore